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Abstract. We present theoretical calculations for the static structure and ordering properties of
the Na–K liquid alloy. Our theoretical approach is based on the neutral pseudoatom method for
deriving the interatomic pair potentials, and on the modified-hypernetted-chain theory of liquids
for obtaining the liquid structure, leading to a whole combination that is free of adjustable
parameters. The results obtained predict a weak phase-separating tendency, in good agreement
with the available experimental data.

1. Introduction

During the last few years, remarkable progress has been achieved in the theoretical
description of the static, thermodynamic, and dynamic properties of simple (s–p bonded)
liquid metals [1, 2]. This has been mainly due to the combination of pseudopotential
perturbation theory with modern accurate liquid-state theories and/or classical computer
simulation techniques. The use of accurate pseudopotentials, derived from first principles,
combined with the fact that covalent effects are basically negligible in simple liquid
metals, has allowed the use of the homogeneous electron gas as the reference state for
the perturbative calculation of the energy of the system.

However, when it comes to alloys, the situation is very different. Although much work
has been performed in the study of structural and thermodynamic properties of liquid binary
alloys by using semiempirical models [1, 3], studies from a more fundamental level are far
more scarce. This situation can be explained in terms of one or more of the following
reasons. First, the environment of an ion in an alloy can be very different from that of a
free atom, where standard pseudopotentials are constructed; therefore, the pseudopotential
is likely to change, and transferability problems may arise. Second, the pseudopotential
may cease to be weak, and consequently perturbation theory will no longer be valid. Third,
covalent/ionic tendencies may appear in the alloy, and the use of the homogeneous electron
gas as a reference system will not be appropriate. The second and third problems may be
overcome by resorting to first-principles molecular dynamics which uses density functional
theory (DFT) instead of perturbation theory, although this approach does usually rely on
free-atom computed pseudopotentials.
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In this paper we concentrate on a liquid alloy, namely NaxK1−x , for which the above
second and third problems do not really apply. This system may be considered as a simple
liquid alloy where the nearly-free-electron theory holds and, therefore, the pseudopotential
perturbation theory can be applied. This fact, combined with the availability of extensive
experimental work on this alloy, has motivated an appreciable amount of theoretical work
that has already been performed on this system.

In the late sixties, Enderby and North [4] carried out the first theoretical calculation of the
x-ray static structure factor at the equiatomic composition. They used the Percus–Yevick
(PY) solution for a binary mixture of hard spheres (HS), obtaining results in qualitative
agreement with the corresponding experimental results of Henningeret al [5]. Moreover,
the calculated isothermal compressibility value, derived from the long-wavelength limit of
the partial structure factors, showed a good agreement with the experimental results of
Abowitz and Gordon [6]. The PY–HS model, combined with a Heine–Abarenkov-type
pseudopotential and Ziman’s formula, was also used by van der Lugtet al [7] to calculate
the electrical resistivity of this alloy over the whole concentration range; their results were
in good agreement with their own experimental measurements [7], which show a parabolic
shape with a maximum located atxNa ≈ 0.5.

The experimental bulk viscosity, estimated from the ultrasonic measurements of Amaral
and Letcher [8], shows a peaked structure at a concentration 0.5 6 xNa 6 0.65, which has
been explained in terms of the existence of concentration fluctuations [9]. A similar peaked
structure has also been observed for liquid Na–Cs [10] which is a system with a strong
tendency towards homocoordination.

The existence of homocoordination tendencies in the NaxK1−x liquid alloy atT = 373 K,
is also predicted from the thermodynamic activity measurements of Cafassoet al [11] and
Hultgren et al [12]. The x-ray and neutron diffraction experiments of van der Lugtet al
(see [13]), carried out for several concentrations and temperatures, also confirm the tendency
towards homocoordination.

Several other theoretical studies, using either semiempirical [14, 15] or more
fundamental [16–19] approaches, have also been attempted in an effort to calculate the
static structure and/or some thermodynamic magnitudes of this alloy. Those based on
semiempirical models have mainly focused on the thermodynamic properties, and although
use has been made of fitted concentration-dependent parameters, they have given some
insight concerning the interatomic interactions. On the other hand, those studies based
on more fundamental approaches have been based on pseudopotential perturbation theory
combined with either perturbative or integral equation theories of liquids, and have basically
concentrated on the equiatomic composition. For example, Umaret al [16] studied the
Na0.5K0.5 liquid alloy, using the empty-core model (ECM) pseudopotential [20] to derive the
interatomic pair potentials in the alloy, and the structure was computed within a perturbative
approach using a HS mixture as reference system. A similar scheme, although with a
different pseudopotential, was used by Hafner [17] to study the Na0.5K0.5 composition.
Although both works produced reasonable results for some thermodynamic properties, their
static structure results showed no indication of homocoordination tendencies. Similar results
were obtained by Singh [18] who used interatomic pair potentials derived from a Heine–
Abarenkov-type pseudopotential. Recently, Moriet al [19] have studied the static structure
of the Na0.5K0.5 liquid alloy by combining the Hasegawaet al [21] pseudopotential with
both molecular dynamics (MD) simulations and the accurate modified-hypernetted-chain
(MHNC) theory of liquids. However, although they obtained a very good theory/MD
agreement, their structural results gave no indication about homocoordination tendencies.

Therefore, it may be concluded that the main problem is focused on the derivation of
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accurate interatomic interactions for this alloy. In this paper we study the static structure
of the NaxK1−x liquid alloy at T = 373 K by using effective interatomic pair potentials
derived from the neutral-pseudoatom (NPA) method [22–25], whereas the liquid structure
is studied by resorting to the MHNC theory of liquids. The ensuing combination results in
a calculation that is wholly free of adjustable parameters.

The NPA method has already been successfully applied to the study of the static features
of the liquid alkali [26] and alkaline-earth [25] metals. The philosophy of the NPA method
is similar to that of the pseudopotential theory, and so is its domain of applicability. In
conjunction with DFT, it is entirelyab initio and has the advantage of handling true, rather
than pseudodensities. In this paper, we first extend the NPA method to simple metallic
alloys and we then apply it to the NaxK1−x liquid alloy.

The MHNC theory used in the evaluation of the liquid structure belongs to the
new generation of accurate integral-equation theories of liquids [27]. Its application
to various one-component fluids—ranging from simple model potentials to the liquid
alkali and alkaline-earth metals—has yielded excellent results for both the structural
and thermodynamic properties. Similar conclusions have been obtained for the case of
binary mixtures interacting via Lennard-Jones potentials. We briefly discuss the MHNC
approximation in section 2.

2. Liquid-state theory

Most of the integral-equation theories of liquids stem from the Ornstein–Zernike equation,
which for a homogeneous, isotropic, binary system reads(i, j = 1, 2)

hij (r) = cij (r) +
2∑

l=1

ρlhil(r) ∗ clj (r) (1)

which defines the direct correlation functions,cij (r), in terms of the total correlation
functionshij (r) = gij (r) − 1, wheregij (r) denote the partial pair distribution functions,
andρl denote the partial ionic number densities. Now, equation (1) is supplemented by the
exact closure relation

cij (r) = hij (r) − ln[gij (r)e
βϕij (r)+Bij (r)] (2)

whereβ = (kBT )−1 is the inverse temperature times the Boltzmann constant, theϕij (r)

are the interatomic pair potentials, and theBij (r) denote the so-called bridge functions. In
this work we have used the MHNC theory, in which the bridge functions are approximated
by those of some reference system. Under this scheme, the actual choice of the bridge
functions is mainly determined by the availability of simple expressions for them, either
analytic or derived from computer simulation [28–30]. These functions usually depend on
some parameters, and different choices of the bridge functions, along with different criteria
to determine the parameters, have led to different versions of the MHNC approximation
[27, 31, 32]. In practice, a common procedure has been to represent the bridge functions of
the system under study by those of a HS system. This approach has led to rather accurate
results for the structural and thermodynamic properties of various one-component fluids,
ranging from the one-component plasma to Lennard-Jones fluids and simple liquid metals,
and also for two-component Lennard-Jones and soft-sphere liquids [31–33].

Other attempts have been made to use the bridge function of a reference system which
resembles the system under study more closely than a mixture of additive hard spheres,
and on the other hand, to eliminate the need for fixing parameters for the bridge functions.
The MHNC-REP approximation, proposed by Levesqueet al [34] and Mori et al [19],
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follows this idea, replacing theBij (r) appearing in equation (2) by those associated with a
reference system which is chosen to be the system under study, although interacting with
the repulsive part of the interatomic pair potentials; that is

ϕij,rep(r) =
{

ϕij (r) − ϕij (Rij ) r < Rij

0 r > Rij

(3)

where theRij are the positions of the first minimum of the correspondingϕij (r). This choice
is based on the assumption that the bridge functions,Bij,rep(r), of this reference system are
very similar to the realBij (r). Now, theBij,rep(r) are obtained by solving numerically the
PY approximation for theϕij,rep(r); this procedure is justified by the empirical observation
that the PY approximation is rather accurate for those systems interacting through harshly
repulsive short-range forces.

The MHNC-REP approximation has been applied by Moriet al to calculate the structural
features of the Na0.5K0.5 [19], LixNa1−x [35] and Na0.5Cs0.5 [36] liquid alloys, leading to
results in excellent agreement with the corresponding MD simulations.

3. Effective interatomic potentials: the NPA

A simple liquid metallic alloy, AxB1−x , may be regarded as an assembly of A-type
and B-type bare ions with chargesZA

v and ZB
v respectively, whose configuration is

random in space and time, and embedded in a conduction electron gas of mean density
n̄ = ρ[xZA

v +(1−x)ZB
v ] whereρ is the total ionic number density andx is the concentration

of the A-type component. Moreover, the ions attract the valence electrons which pile up
around them, thus screening the ionic potentials and leading to effective interactions between
the ions.

In this section we briefly describe the method for obtaining the interatomic pair
potentials, and for additional details we refer the reader to [22–25].

The present approach for the calculation of the effective interatomic pair potentials
involves two distinct steps. First, the valence electronic densities induced by each type
of ion when embedded in a homogeneous electron gas with densityn̄ are obtained by
the NPA method; then, in the second step we construct A-type and B-type effective local
pseudopotentials which within linear response theory (LRT) reproduce the corresponding
induced valence electronic densities as obtained in the first step. Finally, from both
pseudopotentials, the effective interatomic pair potentials are obtained. Here, we briefly
discuss both steps.

Within the NPA method, it is assumed that the total electronic density,ne(r), of
the AxB1−x alloy, can be decomposed as a sum of single-site, structure-independent and
localized electronic densities,n(A)(r) andn(B)(r), which follow the ions in their movement,
so (Hartree atomic units will be used through the work)

ne(r) =
∑

i

n(A)(|r − R(A)
i |) +

∑
j

n(B)(|r − R(B)
j |)

=
∑

i

[n(A)
c (|r − R(A)

i |) + n(A)
v (|r − R(A)

i |)]

+
∑

j

[n(B)
c (|r − R(B)

j |) + n(B)
v (|r − R(B)

j |)] (4)

whereR(A)
i andR(B)

j denote the ionic positions,n(A)
c (r) andn(B)

c (r) are the core electronic
densities, andn(A)

v (r) and n(B)
v (r) are the valence electronic densities (screening clouds)
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associated with the A-type and B-type ions respectively. The main aim of the NPA method
is the computation ofn(A)

v (r) andn(B)
v (r); it proceeds as follows.

In a zeroth-order approximation, the alloy can be represented as a homogeneous electron
gas of densityn̄ compensated by a similar positive background of the same density.
However, the ions are not distributed uniformly, but are located at positions{R(α)

i } (α = A,
B), and create around them a potentialV

(α)
ion (r). Therefore, the previously homogeneous

electron density will change by an amount1nv(r) = nv(r) − n̄, due to the difference
between the potential created by the ions and that created by the homogeneous positive
background,

1V (r) =
∑

i

V
(A)
ion (|r − R(A)

i |) +
∑

j

V
(B)
ion (|r − R(B)

j |) −
[
−1

r
∗ n̄

]
(5)

where the symbol * denotes the convolution integral. To compute1nv(r), we rewrite
1V (r) as

1V (r) =
∑

i

V
′(A)
ion (|r − R(A)

i |) +
∑

j

V
′(B)
ion (|r − R(B)

j |) + V ′′(r) (6)

where

V
′(A)
ion (r) = V

(A)
ion (r) −

[
−1

r
∗ ν(A)(r)

]
V

′(B)
ion (r) = V

(B)
ion (r) −

[
−1

r
∗ ν(B)(r)

]
(7)

and

V ′′(r) = 1

r
∗

[
n̄ −

∑
i

ν(A)(|r − R(A)
i |) −

∑
j

ν(B)(|r − R(B)
j |)

]
≡ 1

r
∗ nr(r) (8)

with ν(A)(r) and ν(B)(r) being cavity screening functions which integrate to the ionic
valencesZA

v and ZB
v respectively; they are introduced so as to renderV

′(A)
ion , V

′(B)
ion and

V ′′(r) as weak as possible. In fact, the choice is mainly determined by requiring that the
residual density,nr(r), be small everywhere.

Now, the ‘auxiliary ionic potential’,V ′(α)
ion , introduced into the uniform electron gas,n̄,

induces a screening valence electronic densityn′(α)
v (r). Moreover, the contribution of the

corresponding core electrons to the ‘auxiliary ionic potential’ is influenced by the presence
of the valence electrons; consequentlyV

′(α)
ion andn′(α)

v (r) must be evaluated self-consistently.
This is performed by using the DFT, solving the Kohn–Sham equations [37], and with the
electronic exchange and correlation effects included via the the local density approximation
(LDA).

AlthoughV
′(α)
ion is not weak in the core region, it does have the weak-scattering property,

since the associated Friedel sum is equal to zero. Then, neglecting all the multiple-scattering
contributions,1nv(r) can be approximated by

1nv(r) = nv(r) − n̄ =
∑

i

n′(A)
v (|r − R(A)

i |) +
∑

j

n′(B)
v (|r − R(B)

j |) + n′′
v(r) (9)

where n′′
v(r) is the valence electronic density induced byV ′′(r). As V ′′(r) is small

everywhere,n′′
v(r) is computed via LRT yielding

n′′
v(r) = −n̄ +

∑
i

n′′(A)
v (|r − R(A)

i |) +
∑

j

n′′(B)
v (|r − R(B)

j |). (10)

Here,n′′(A)
v (r) andn′′(B)

v (r) are the electron densities that screen, in the linear response,
the charge distributions given byν(A)(r) andν(B)(r) respectively; that is,

ñ′′(A)
v (q) = −4π

q2
χ(q)ν̃(A)(q) n′′(B)

v (q) = −4π

q2
χ(q)ν̃(B)(q) (11)
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where the tilde denotes the Fourier transform andχ(q) is the density response function. In
order to maintain consistency with the previous step, the exchange and correlation effects
in χ(q) have been included via a LDA local field. Now, substitution of equation (10) in
equation (9) gives

nv(r) =
∑

i

n(A)
v (|r − R(A)

i |) +
∑

j

n(B)
v (|r − R(B)

j |) (12)

which completes the calculation ofnv(r).
Now, we turn to the calculation of the local pseudopotentials,ṽ(A)

ps (q) and ṽ(B)
ps (q), that

within LRT reproduce the nonlinear screening charges determined by the NPA method. This
is achieved by first ‘pseudizing’n(A)

v (r) andn(B)
v (r), in the way described in [38], so as to

eliminate the core orthogonality oscillations, leading to the corresponding induced valence
electron pseudodensitiesn(A)

ps (r) andn(B)
ps (r), from which the corresponding pseudopotentials

are obtained via

ñ(A)
ps (q) = χ(q)ṽ(A)

ps (q) ñ(B)
ps (q) = χ(q)ṽ(B)

ps (q). (13)

Some comments concerning the assumptions made to obtain the pseudopotentials are
now in order. The present approach is based on the physical picture of a simple liquid
metallic alloy where the ions are diffusively free and the electronic response to them is
treated as a superposition of the single responses to each type of ion. The calculation of
the induced valence electronic densities around each type of ion, i.e.n(A)

v (r) and n(B)
v (r),

implies that one should solve for each type of ion the Kohn–Sham equations for a system
composed of a bare nucleus surrounded by a spherical cavity and embedded in a jellium
with a given mean electronic densitȳn. Moreover, the assumption of spherical symmetry
reduces the calculation to solving the radial Kohn–Sham equations.

For the cavity screening functions,ν(A)(r) andν(B)(r), used in the calculation ofn′′(r),
we have chosen a spherical shape. Whereas for a solid system, with a known structure,
it would be possible to evaluate explicitly the residual density,nr(r), for different shapes
of the cavity functions, and to choose those which minimizenr(r), in the case of a liquid
system the structure is not knowna priori. However, in the liquid state what really matters
is the ensemble average of the residual density which turns out to be zero, irrespective of
the particular shape adopted for the cavity functions, provided that they integrate to the
respective ionic valencesZA

v andZB
v respectively. Therefore, we have chosen the simplest

approximation—that is, spherical shapes.
The choice of local effective pseudopotentials, as defined through equation (13), is

an ansatz which avoids the introduction of adjustable parameters while at the same
time preserving the full information contained in the calculated NPA-induced valence
electronic densitiesnA

v (r) and nB
v (r). In this way, the pseudopotentials are built within

the linear response regime, so as to generate the nonlinear screening charges determined
by the NPA method. Finally, note that equation (13) uniquely defines the local effective
pseudopotentials; this would no longer be the case for nonlocal pseudopotentials.

4. Results

4.1. Calculation of the effective interatomic potentials

As previously indicated, the evaluation of the interatomic pair potentials requires the
previous calculation of the induced electronic densitiesnA

v (r) andnB
v (r). Now, each induced

density has two parts,n′(α)
v (r) andn′′(α)

v (r) (α = A, B).
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For n′(α)
v (r) we have solved the Kohn–Sham equations, in which the exchange and

correlation potential has been evaluated within the LDA, using the expression proposed by
Vosko et al [39] for the exchange and correlation energy density. The technical aspects
concerning the solution of the equations are discussed in detail in [40].

For n′′(α)
v (r) we have used a density response function,χ(q), which, in order to maintain

consistency with the previous step, incorporates the electronic exchange and correlation
effects via a LDA local field factor.

Table 1. Input data for the series NaxK1−x at T = 373 K, studied in this work.ρ is the total
ionic number density taken from [41, 42].

x = xNa ρ (Å−3)

0.0 0.012 614
0.3 0.014 874
0.4 0.015 805
0.5 0.016 827
0.8 0.020 684
1.0 0.024 217

Now, once the A-type and B-type effective local pseudopotentials,ṽ(A)
ps (q) and ṽ(B)

ps (q),
have been obtained, application of standard second-order perturbation pseudopotential theory
leads to the effective interionic pair potentials,ϕαβ(r) (α, β = A, B), given by

ϕαβ(r) = Zα
v Zβ

v

r
+ ϕαβ

ps (r) (14)

where the Fourier transform ofϕαβ
ps (r) is given as

ϕ̃αβ
ps (q) = χ(q)ṽα

ps(q)ṽβ
ps(q). (15)

The present method has been applied to the study of the structural features of the liquid
binary alloy NaxK1−x at T = 373 K, and in table 1 we show the specific thermodynamic
states for which the present study has been carried out. The total ionic number densities
used in the calculations have been taken from the experimental results of van der Lugt and
co-workers [41, 42]

First, we show in figure 1 the NPA interatomic pair potentials corresponding to both pure
sodium and potassium obtained at a temperatureT = 373 K. Although several interatomic
pair potentials have been proposed for the liquid alkali metals, either based on local or
nonlocal pseudopotentials, we have already shown that the NPA-based pair potentials give
a good description of the structural [26], thermodynamic [43], and dynamic properties
[44, 45, 46] of the liquid alkali metals at thermodynamic conditions near and above melting.
Moreover, for liquid Na, we have found [26] that the NPA pair potential is very similar
to the ‘experimental’ one extracted by Reattoet al [47] from the measured static structure
factor [48].

In figure 1, we have also included the pair potentials obtained by using the simple
ECM pseudopotential,̃vps(q) = −4πZv cos(qrc)/q

2, along with the Ichimaru–Utsumi
approximation for the local field factor. The correspondingrc-values have been chosen
so as to match the first peak position of the experimental static structure factor at melting;
in this way we have obtainedrc(Na) = 0.937 Å and rc(K) = 1.238 Å, which are similar to
the values usually found in the literature. Comparison between the NPA pair potentials and
the ECM ones shows that the two schemes lead to rather similar shapes for the interatomic
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Figure 1. Interatomic pair potentials,ϕij (r), for Na and K atT = 373 K. The full lines show
the NPA results, and the broken lines show the results for the ECM pseudopotential.

pair potentials. In fact, although the repulsive parts are nearly identical, it is observed that
some small differences appear: e.g., the Friedel oscillations in the ECM pair potentials
are stronger and the principal minimum is a bit deeper in the case of potassium. Rather
similar trends were also obtained for the other alkali metals at thermodynamic conditions
near melting [26].

Figures 2–4 show the NPA interatomic pair potentials obtained for three different
concentrations of the alloy NaxK1−x ; for comparison, we have also included the ECM
interatomic pair potentials calculated using the previousrc-values. First, it is observed that
the trends in the changes shown by theϕij (r), as the alloy concentrationxNa is varied, are
very similar in the NPA and ECM theoretical approaches. In particular, we point out the
appreciable changes undergone byϕNaNa(r), whereasϕKK(r) shows rather small changes
as a function of the alloy concentration. In fact, these changes may be explained in terms of
the trends suggested by Hafner and Heine [49]; although these trends were obtained within
the framework of second-order perturbation theory with the ECM pseudopotential for the
bare electron–ion interaction, the conclusions also apply to the NPA-based interatomic pair
potentials [25, 26]. According to Hafner and Heine, the trends in the form of the interatomic
pair potentials around the nearest-neighbour distance are dominated by the interplay of two
parameters (the core radius,rc, and the mean valence electron density,n̄) giving rise to
two main effects: the ‘core effect’ which governs the changes in the repulsive part of the
interatomic pair potentials; and the ‘amplitude effect’ which usually overcomes the other
effect, and determines the changes in the amplitude of the Friedel oscillations.

For the ϕNaNa(r), when thexNa is reduced, the mean electron density in the alloy
is decreased, and according to the ‘core effect’ the repulsive core of the interatomic pair
potential is also slightly decreased; this has the effect of uncovering the principal minimum
of the interatomic pair potential which becomes deeper and steeper. On the other hand, the



The static structure ofNaxK1−x liquid alloy 4473

Figure 2. NPA interatomic pair potentials,ϕij (r), for the Na0.3K0.7 liquid alloy at T = 373 K.
The inset shows the corresponding results obtained by using the ECM pseudopotentials.

‘amplitude effect’ produces an increase of the amplitude of the Friedel oscillations and a
phase shift towards greaterr-values which also gives rise to a further uncovering of the first
minimum. Therefore, in the case of theϕNaNa(r) the two effects act together, increasing
both the depth and width of the principal minimum of the interatomic pair potential, as seen
in figures 2–4.

In the case ofϕKK(r) both effects are rather weak. This is so because now the strength
of the ‘amplitude effect’ is reduced for the range of values ofrc/n̄ considered when, starting
with pure K, thexNa is increased. In fact, asxNa is increased, the repulsive core slightly
grows, and according to the ‘amplitude effect’, there is also a decrease in the amplitude of
the Friedel oscillations and a phase shift towards smallerr-values. Both effects go in the
direction of covering the principal minimum of the interatomic pair potential with the net
effect of a small decrease in the depth and width of the first minimum.

We point out that although the above trends were obtained within the framework of
second-order perturbation theory using the ECM pseudopotential, these trends are also
followed by the rather more elaborate NPA pair potentials. However, this does not imply
that the use of second-order perturbation theory with the simple ECM pseudopotentials will
be an adequate theoretical tool for explaining observed structural properties of the liquid
NaxK1−x alloy. In fact, for all of thexNa considered, appreciable differences are observed
between the NPA- and ECM-based interatomic pair potentials; among these we stress that the
NPA-basedϕNaNa(r) is always deeper than the ECM one, whereas the opposite is the case
for theϕKK(r). As the structural properties are closely linked to the relative magnitudes of
theϕij (r) in the alloy, the above-mentioned differences will have far-reaching consequences
in the predicted structural properties of the alloy.
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Figure 3. As figure 2, but for the Na0.5K0.5 liquid alloy at T = 373 K.

4.2. Liquid structure

The calculation of the liquid structure has been carried out by combining the interatomic
pair potentials obtained in section 4.1 with the MHNC-REP theory of liquids presented in
section 2.

Figure 5 shows the calculated static structure factors for Na and K atT = 373 K, along
with the corresponding x-ray diffraction data of van der Lugt and co-workers [50, 51] and
Waseda [52]. First of all, we must point out the small discrepancies shown by both sets of
experimental data concerning the height of the principal peak of the static structure factor,
S(qpeak). In both metals the discrepancy is bigger than 10%. In fact, van der Lugt’s data
give S(qpeak) ≈ 3.1 for Na andS(qpeak) ≈ 2.9 for K, whereas those of Waseda lead to
S(qpeak) ≈ 2.7 andS(qpeak) ≈ 2.5 respectively. In a recent study of the structural properties
of the liquid alkali metals, at thermodynamic conditions near melting [26], we have also
found a similar discrepancy in theS(qpeak), with the data of van der Lugt and co-workers
always being bigger. In general, there is an overall good agreement between the theoretical
S(q) and the experimental data. The positions and amplitudes of the oscillations are well
predicted, although the NPA-based results show, for both Na and K, a small shift in the
position of the second peak.

Now, figures 6–8 show the partial pair distribution functions,gij (r), obtained for three
concentrations. Following the tendencies pointed out for theϕij (r), it is observed that
gNaNa(r) undergoes important changes whereas bothgNaK(r) andgKK(r) change slightly.
In fact, when thexNa is decreased the height of the main peak ofgNaNa(r) increases, as
expected from the progressive steepness of the repulsive core of theϕNaNa(r), while its
position remains practically unchanged. On the other hand, thegNaK(r) remains practically
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Figure 4. As figure 2, but for the Na0.8K0.2 liquid alloy at T = 373 K.

constant while the height of the main peakgKK(r) slightly increases and becomes, for
xNa = 0.5 and 0.3, comparable to that ofgNaK(r). For these two concentrations the global
configuration suggested by the NPA-basedgij (r) predicts a slight tendency towards phase
separation; we will come to this point later.

In figures 6–8 we have also plotted, for comparison, thegij (r) derived from the ECM
interatomic pair potentials. Now, the main peaks of the threegij (r) have similar heights,
with the gNaK(r) becoming the highest forxNa = 0.5 and 0.3; now, these features are
signalling a very weak tendency towards heterocoordination.

As already pointed out, van der Lugt and co-workers (see [13]) have performed
both x-ray and neutron diffraction experiments for the NaxK1−x liquid alloy at several
concentrations and temperatures. Figure 9 shows, as a function of the concentration, two
main experimental structural features of this alloy, namely the position,qpeak, and height
of the first peak of the total x-ray measured structure factor,S(qpeak); they are compared
with the theoretical results of this paper, where the theoretical x-ray total structure factor
has been computed by using the atomic form factors given in [53]. In figure 9 we have
also included the experimental results forqpeak obtained by Ortonet al [54], which are
always slightly bigger than those of van der Lugtet al (see [13]). It is observed that the
present theoretical results are always bracketed by the two sets of experimental results; this
gives further confidence in the accuracy of the present theoretical results which, on the other
hand, are similar to those obtained for the pure metals. ForS(qpeak), it is now observed
that the experimental results are bracketed by the two sets of theoretical results which
closely follow, as the concentration changes, the trends shown by the experimental results.
However, now the theory/experiment discrepancy is around 10%, with the NPA-based and
ECM-based results underestimating and overestimating, respectively, the experimental data.
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Figure 5. Static structure factors for Na and K atT = 373 K obtained using the MHNC-REP
approximation. The full lines show the results for the NPA interatomic pair potentials, whereas
the broken lines show the results for the ECM pseudopotential. The asterisks represent the x-ray
data of Waseda [52] and the open circles show the x-ray data of van der Lugt and co-workers
[50, 51].

Nevertheless, the discrepancy must be treated with some caution. As we already pointed
out, in the case of the pure metals the discrepancy between van der Lugt’s data (see [50]) for
S(qpeak) and Waseda’s [52] data is also around 10%, with the latter data being much closer
to the NPA-based results. In any case, it seems reasonable to conclude that the NPA-based
results are more accurate than the ECM-based ones, as the former results are between the
two sets of experimental results.

Figures 10–12 show a comparison, for three concentrations, between the experimental
x-ray total structure factors and the theoretical ones. In general, an overall good agreement
between theory and experiment is obtained for all of the concentrations, with the NPA-based
results showing a small phase shift in the region between the first minimum and the second
maximum of the total structure factor, but being more accurate than the ECM-based results
for the regionq 6 qpeak.

Now, we return to the study of the possible existence of deviations from an ideal
behaviour in the NaxK1−x liquid alloy. For this purpose, the Bhatia–Thornton (BT)
[55] partial structure factors are ideally suited. In a binary system, three BT partial
structure factors are defined: the concentration–concentration (SCC(q)), the number–number
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Figure 6. Partial pair distribution functions,gij (r), for the Na0.3K0.7 liquid alloy atT = 373 K.
The inset shows the corresponding results obtained by using the ECM pseudopotentials.

Figure 7. As figure 6, but for the Na0.5K0.5 liquid alloy at T = 373 K.

(SNN(q)), and the number–concentration (SNC(q)) partial structure factors; they are readily
computed from the partial pair distribution functions,gij (r), previously obtained with the
MHNC-REP approximation introduced in section 2. Moreover, the BT partial structure
factors have the advantage that their long-wavelength limit, which has proved to be very
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Figure 8. As figure 6, but for the Na0.8K0.2 liquid alloy at T = 373 K.

useful in obtaining microscopic information in a liquid alloy, can also be derived from
thermodynamic magnitudes; this is very helpful because of the practical difficulties of
measuring, via diffraction experiments, the partial structure factors at lowq-values. Now,
the long-wavelength limit of the BT partial structure factors can be obtained from

SCC(0) = NKBT

(
∂2G

∂x2
1

)−1

N,P,T

= (1 − x1)

(
∂ ln a1

∂x1

)−1

N,P,T

(16)

SNN(0) = ρKBT κT + δ2SCC(0) (17)

SNC(0) = −δSCC(0) (18)

whereN is the total number of particles,G is the Gibbs free energy,ai and xi are the
thermodynamic activity and concentration of componenti respectively,κT is the isothermal
compressibility, andδ is a dilatation factor given by

δ = v1 − v2

x1v1 + (1 − x1)v2
(19)

wherevi is the partial volume per atom of componenti.
Figure 13 shows, as a function of the concentration, the theoretical results forSCC(0)

obtained from both the NPA-based and ECM-based interatomic pair potentials. In the
figure we have included the experimental data derived by van der Lugt and co-workers
(see [13]) from their small-angle x-ray scattering experimental results, and also the results
derived, according to equation (16), from the activity measurements of Cafassoet al [11]
and Hultgrenet al [12]. The three sets of experimental data, which show some small
discrepancies among themselves, do clearly indicate that the ions in the NaxK1−x liquid
alloy have a slight preference for self-coordination; in other words, there is a very mild
phase-separating tendency. In fact, this is the behaviour predicted by the present NPA-
based theoretical results which closely follow Hultgren’s data. On the other hand, the
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Figure 9. Top panel: the position of the first peak of the total x-ray structure factor. Bottom
panel: the height of the first peak of the total x-ray structure factor. Squares: NPA-based results.
Triangles: ECM-based results. Open circles: experimental results [13]. Asterisks: experimental
results [54].

ECM-based theoretical results predict a nearly ideal behaviour with a very weak tendency
towards heterocoordination.

Figure 14 shows a further comparison forSNN(0) andSNC(0), where the corresponding
experimental data have been derived from the activity measurements of Hultgrenet al [12],
the experimental molar volumes of the system of van der Lugtet al [41], the sound velocity
data of Kimet al [56], and the specific heat data of Lyon [57]. Once again, the degree of
accuracy of the NPA-based results is very good, and similar to that obtained forSCC(0).

Finally, we stress that the accurate structural results presented in this paper are basically
due to the NPA-based interatomic pair potentials. We have calculated the liquid structural
functions of this alloy, by using the variational hypernetted-chain-approximation theory of
liquids [31], and the results obtained are nearly identical to those presented in this work.

5. Conclusions

We have extended the NPA model to the case of simple metallic alloys and we have applied
it to the study of the structural and ordering properties of the of the NaxK1−x liquid alloy at
T = 373 K. The combination of the NPA method to obtain the interatomic pair potentials
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Figure 10. The total x-ray static structure factor,S(q), for the Na0.3K0.7 liquid alloy at
T = 373 K. Full line: NPA-based results. Broken line: ECM-based results. Open circles:
experimental results [13].

Figure 11. The total x-ray static structure factor,S(q), for the Na0.5K0.5 liquid alloy at
T = 373 K. The key is the same as in figure 10.

with the MHNC-REP theory of liquids to obtain the liquid static structure gives rise to a
theory which is wholly free of adjustable parameters, using the atomic numbers and the
thermodynamic state under study as the only input data. The present NPA formulation
for a simple liquid-metallic alloy, AxB1−x , starts from the screening charges around the
A-type and B-type bare ions embedded into an homogeneous electron gas, which yields A-
type and B-type effective local pseudopotentials, and finally the interatomic pair potentials
in the alloy. The interatomic pair potentials obtained show, as functions of the mean
electronic density in the alloy, similar trends to those obtained by using the simple ECM
pseudopotentials. These results confirm and extend the general analysis of Hafner and Heine
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Figure 12. The total x-ray static structure factor,S(q), for the Na0.8K0.2 liquid alloy at
T = 373 K. The key is the same as in figure 10.

Figure 13. The concentration dependence ofSCC(0) for the NaxK1−x liquid alloy atT = 373 K.
Squares: NPA-based results. Triangles: ECM-based results. Continuous line: ideal solution
result, Scc(0) = x(1 − x). Open circles: experimental results from van der Lugtet al [13].
Dash-dotted line: experimental results from the activity measurements of Cafassoet al [11].
Chain line: experimental results from the activity measurements of Hultgrenet al [12].

[49] about the variations of the interatomic pair interactions and the relationship to both
solid and liquid structures.

The results obtained for the liquid structural properties of the NaxK1−x liquid alloy at
T = 373 K show a good agreement with the experiment, which we consider very rewarding
given that our calculations are completely free of adjustable parameters. In fact, as far as
we are aware these are the first parameter-free theoretical calculations which predict a weak
phase-separating tendency for this alloy. On the other hand, our study shows that although
the ECM-based interatomic pair potentials are able to account for the observed total x-ray
structure factor, they fail to predict the ordering properties of the alloy.
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Figure 14. The concentration dependence ofSNC(0) andSNN(0) for the NaxK1−x liquid alloy
at T = 373 K. Filled and open squares: NPA-based results forSNC(0) andSNN(0) respectively.
Filled and open triangles: ECM-based results forSNC(0) andSNN(0) respectively. Continuous
and broken lines: experimental results forSNC(0) andSNN(0) respectively.

Finally, we point out that the present NPA+ MHNC-REP theoretical approach lacks
self-consistency because the screening charges around the A-type and B-type ions should
be computed, not for each ion immersed into an homogeneous electron gas, but taking
into account both the structure of the alloy and the presence of two different kinds of ion.
Therefore, the present NPA approach must be considered as a first step in a whole self-
consistent procedure where the partial pair distribution functions,gij (r), obtained should be
introduced into the NPA method to again compute the screening charges, and so forth. We
are currently working on this procedure, and the results will be reported in due course.
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